

Neural Amortized Inference for Nested Multi-agent Reasoning

Kunal Jha, Tuan Anh Le, Chuanyang Jin, Yen-Ling Kuo, Joshua Tenenbaum and Tianmin Shu

INIA

AAAI, Vancouver, BC, Canada February 2024

Theory of Mind

- Theory of Mind: Reasoning about the hidden mental variables that drive observable actions

The blue car sees the red car but can't see the pedestrian behind the building.

The red car sees the pedestrian and slows down to avoid crashing.

The blue car sees the red car slowing down. Not seeing any other obstacles, it infers the presence of a pedestrian behind the building and therefore slows down.

How Can We Model This?

Partially Observable Markov Decision Processes (POMDP)

- The entire state of the world is not visible
- Each agent stores (mental states, actions, observations)

Bayesian Inverse Planning

P(mental state | plan) C P(plan | mental state) * P(mental state)

P(Blue car existing behind the barrier) ≔ P(∃ Blue)

State

Our Approach: Amortize Lower Levels and Update Beliefs through Importance Sampling

Sample most likely **Red** goals using Learned Distribution from NN1

Our Approach – Building a Dataset for Recursive Reasoning

Experiment - Setup

- 2 Agents, Alice (Green), Bob (Red)
 - Alice wants to move two colored blocks together
 - Bob wants to help or hinder Alice
- Neither agent knows each other's goal
- At each timestep, we ask a model to infer the intentions of **Bob**
- Goal Space 22 times larger than prior work

Experiment - Data Generation

- Procedurally Generate Data by sampling *random States and Goals*

Experiment - Setup

- 3 Agents, Alice (Green), Bob (Red), Charlie (Blue)
 - All cars are randomly assigned to turn left, turn right, or continue moving straight
- <u>No agent knows which direction</u> <u>others are turning</u>
- At each timestep, we ask the model to predict the actions of every car
 - Action space is Accelerate, Brake, Rotate Left, Rotate Right, Signal Danger
- Goal Space <u>18 times larger</u> than prior work

Experiment - Data Generation

- Procedurally Generate Data by sampling *random States and Goals*

Experiment - Generalization Results on Large Dataset

Experiment - Generalization Results on Large Dataset

Conclusion

- Neural amortized inference **drastically accelerates** nested social reasoning while preserving robustness and uncertainty estimation
- This approach has been demonstrated successfully on *goal* inference **and** *physical state* inference

Code

https://github.com/KJha02/AmortizedNestedReasoning