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Theory of Mind

- Theory of Mind: Reasoning about the hidden mental 

variables that drive observable actions



The blue car sees the red car but 
can’t see the pedestrian behind the 
building.



The red car sees the pedestrian 
and slows down to avoid crashing.



The blue car sees the red car 
slowing down. Not seeing any 
other obstacles, it infers the 
presence of a pedestrian behind 
the building and therefore slows 
down.



How Can We Model This?



Partially Observable Markov Decision Processes 
(POMDP)
● The entire state of the world is not visible

● Each agent stores (mental states, actions, observations)

Bayesian Inverse Planning

P(mental state | plan) ∝ P(plan | mental state) * P(mental state)



Interactive Partially Observable Markov Decision Processes (I-POMDP)

P(Blue car existing behind the barrier) ≔ P(∃Blue)
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Interactive Partially Observable Markov Decision Processes (I-POMDP)

P(Crossing | Walking) P(Stopping | Walking)

P(∃Blue) P(∃Blue)



Interactive Partially Observable Markov Decision Processes (I-POMDP)



Interactive Partially Observable Markov Decision Processes (I-POMDP)

P(Seeing Pedestrian | Braking) P(Not Seeing Pedestrian | Braking)



Interactive Partially Observable Markov Decision Processes (I-POMDP)

P(Seeing Pedestrian | Braking) P(Not Seeing Pedestrian | Braking)

P(Crossing | Walking) P(Stopping | Walking)
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Background - Interactive Partially Observable Markov Decision 
Processes

State
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Our Approach: Amortize Lower Levels and 
Update Beliefs through Importance Sampling



Our Approach - Amortized Inference



Our Approach - Amortized Inference

NN0
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Our Approach - Amortized Inference
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Our Approach - Amortized Inference
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Our Approach - Building a Dataset for Recursive Reasoning

Generative 
Model Data NN0

Generative 
Model Data NN1

Generative 
Model Data NNL

Level 0

Level 1

Level L

      …



Experiment - Setup

- 2 Agents, Alice (Green), Bob (Red)
- Alice wants to move two colored blocks together

- Bob wants to help or hinder Alice

- Neither agent knows each other’s goal

- At each timestep, we ask a model to infer the 

intentions of Bob

- Goal Space 20 times larger than prior work 

Alice Bob



Experiment - Data Generation
- Procedurally Generate Data by sampling random States and Goals



Experiment - Results on Larger Dataset
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Conclusion
- Neural amortized inference drastically accelerates nested social reasoning while preserving 

robustness and uncertainty estimation

- Current experiments focus on goal inference, but our framework extends to physical state 

inference


