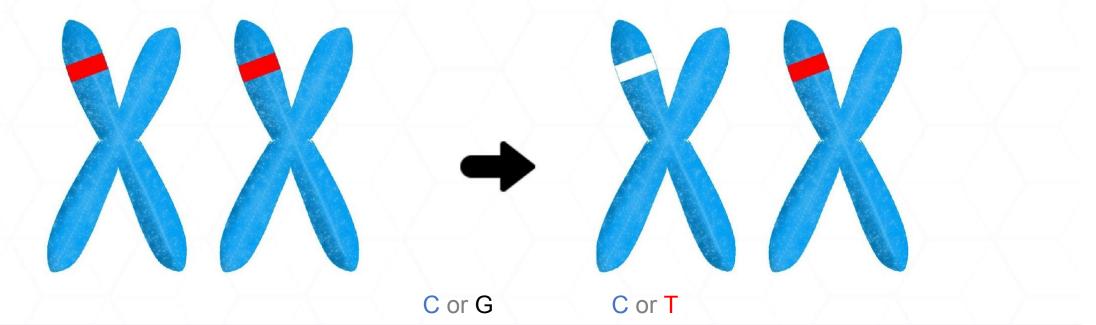

New Gene Mutation Detection System for Sanger Sequencing Data

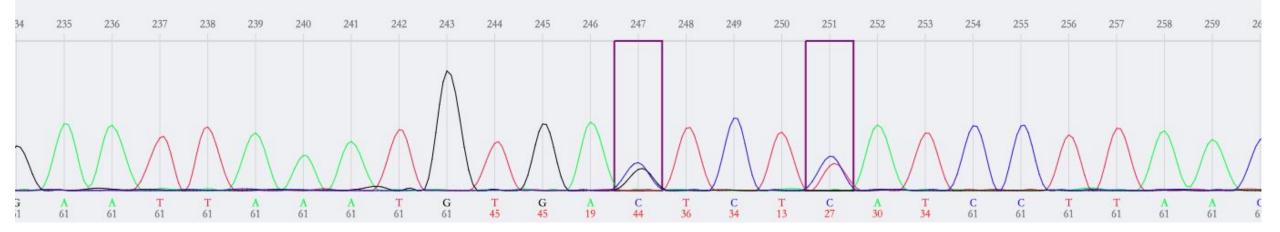
Chuanyang Jin Yuting Wang Tenghao Li

Base Fluorescence Signal Curves

The base fluorescence signals are weak and the sensor is easy to be interfered by electromagnetism. To improve the accuracy, Sanger sequencing equipment sequence each fragment thousands of times to avoid the white noise interference, thus forming a bell curve in accordance with the normal distribution at each normal test sequence site.

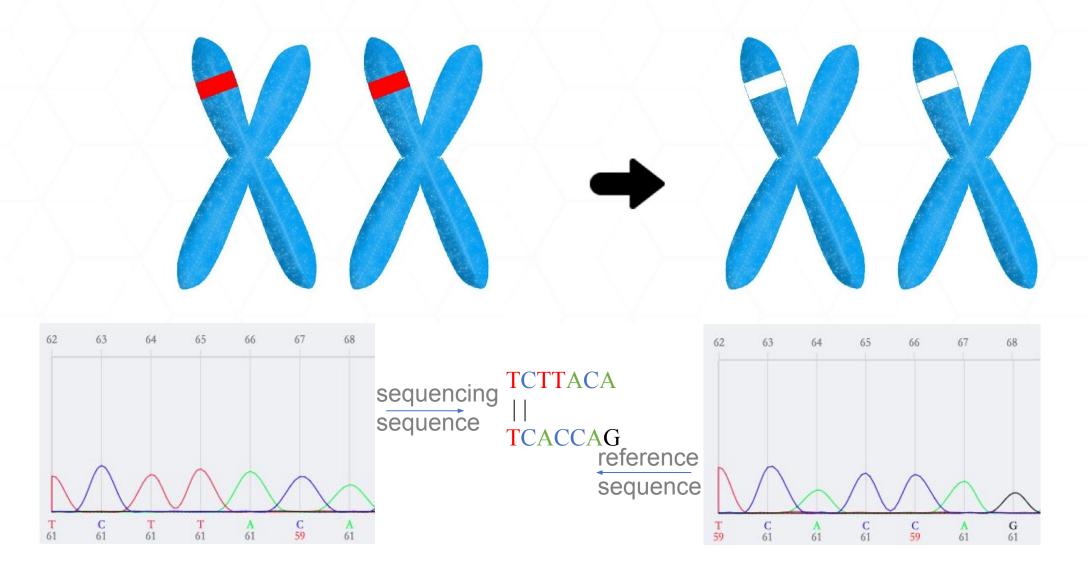
Base coordinates in the current sequencing result sequence




Phred score for base sequencing quality

The ATCG at each integer point is recognized according to the value of the largest base fluorescence signal intensity

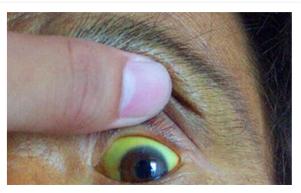
Heterozygous Mutation


Mutation occurs in only one of the two alleles on a pair of homologous chromosomes.

Mutation occurs in both alleles on a pair of homologous chromosomes.

Single Nucleotide Polymorphism (SNP)

Dr. Yang Qi, biological science and medical engineering, Jinling Hospital


SNP = Heterozygous Mutation + Homozygous Mutation

It is the most common form of heritable variation. It accounts for more than 90% of all known polymorphisms. SNP exists widely in the human genome, with an average of one out of every 500-1000 base pairs. It is estimated that the total number of SNP can reach 3 million or more.

SNP affects biological properties and may cause diseases

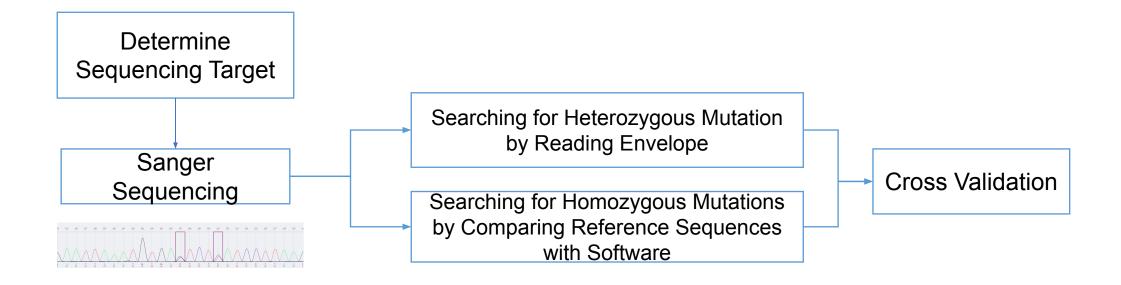
Hearing loss (HL)

Hypertriglyceridemia (HTG) Acute Pancreatitis (AP)

Sanger Sequencing Workflow

Dr. Yang Qi, biological science and medical engineering, Jinling Hospital

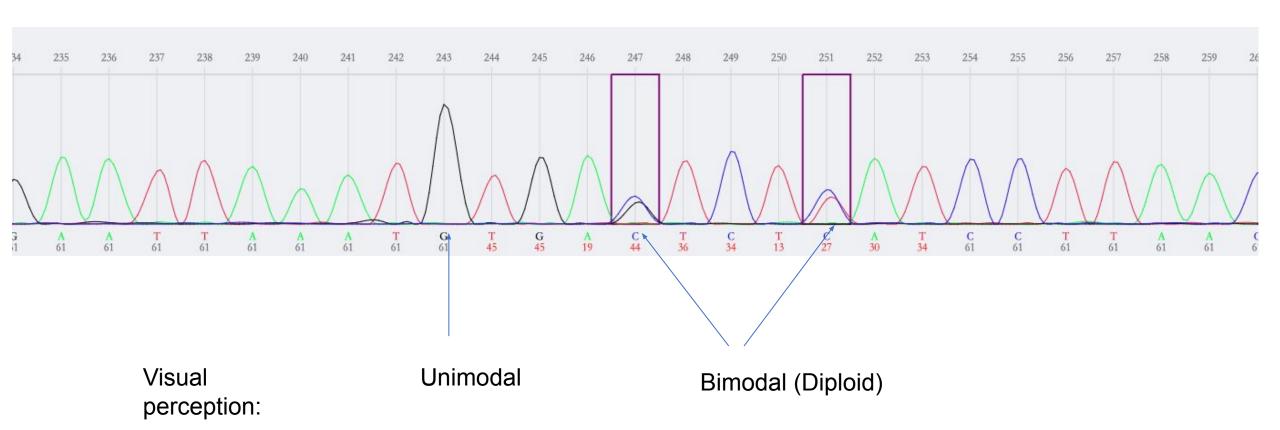
Blood Sampling - > DNA Extraction - > PCR Amplification Reaction - > Put into Sequencer - > Automatic Sequencing - > Analysis of Sequencing Results

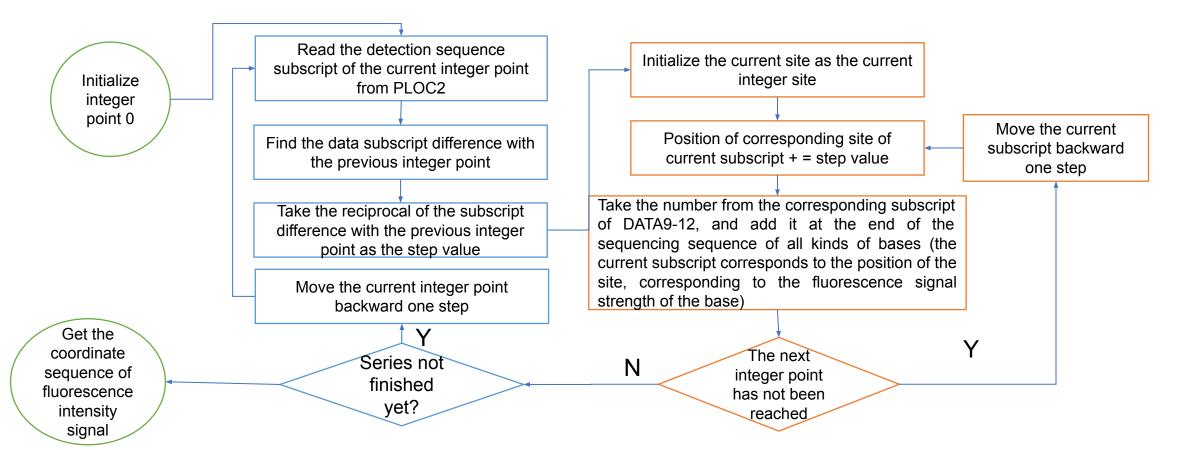


The experiment will be completed in about 2 weeks. Generally speaking, each subject will generate 50-100 sequencing files.

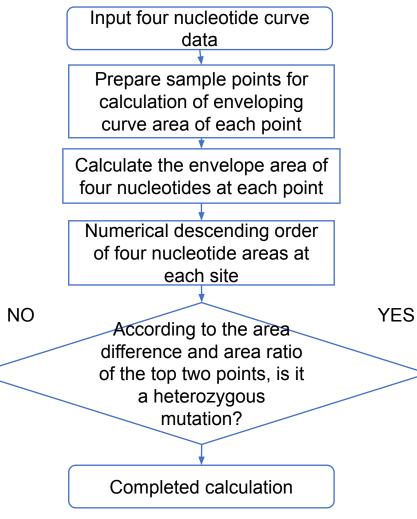
Sanger Sequencing - Clinical Gold Standard

Dr. Yang Qi, Jinling Hospital

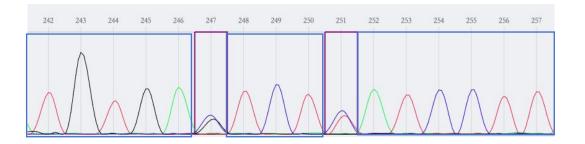

	Maximum flux of single sequencing	Output format	Sequencing accuracy
First generation Sanger sequencing	Short 200-1000 base sequences	Intensity curve of base fluorescence signal	Gold standard


Publed ?

7


Coordinate Sequence of Fluorescence Intensity Signal Obtained from ABIF Format Sequencing Data

Name	Number	ABIF Type	Description
DATA	9-12	short[]	Short Array holding analyzed color data
PLOC	2	short[]	Array of peak locations as called by Baseceller

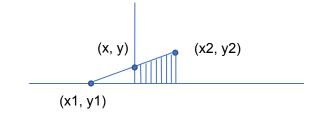


Heterozygous Mutation Detection by Computational Geometry

1. General process of heterozygous mutation identification

2. Discussion on the difference of area difference judgment

At each site, there are four envelope data of nucleotide fluorescence intensity signal. There are two types of situations: A. For the non heterozygous mutation site, when a certain nucleotide is sequenced, only one nucleotide fluorescence intensity signal appears bell curve, and the other is almost 0, so its area difference value is large, and the area ratio is close to 1.


B. when the heterozygous mutation site is sequenced to this site, there will be two (or more, for n-ploid) nucleotide fluorescence intensity signals with bell shaped curves, which are similar in shape, so the area difference between the top two is smaller and the area is larger.

Prepare Sample Points for Calculation of Enveloping Curve Area of Each Site

1. Use the linear slope equation to solve the vertical coordinate y on the cutting line.

Virtual points must be supplemented, otherwise the area of shadow area will be lost in area calculation

If the former point is (x1, Y1) and the latter point is (X2, Y2), and the abscissa of the cutting point is x, then there are:

$$k = \frac{y^2 - y^1}{x^2 - x^1} \qquad y = y^1 + (x - x^1) * k$$

2. According to the four nucleotide fluorescence envelope signal curve samples at 0.5 position on each base left and right, cut them into the array.

Calculate the Envelope Area of Four Nucleotides at Each Site

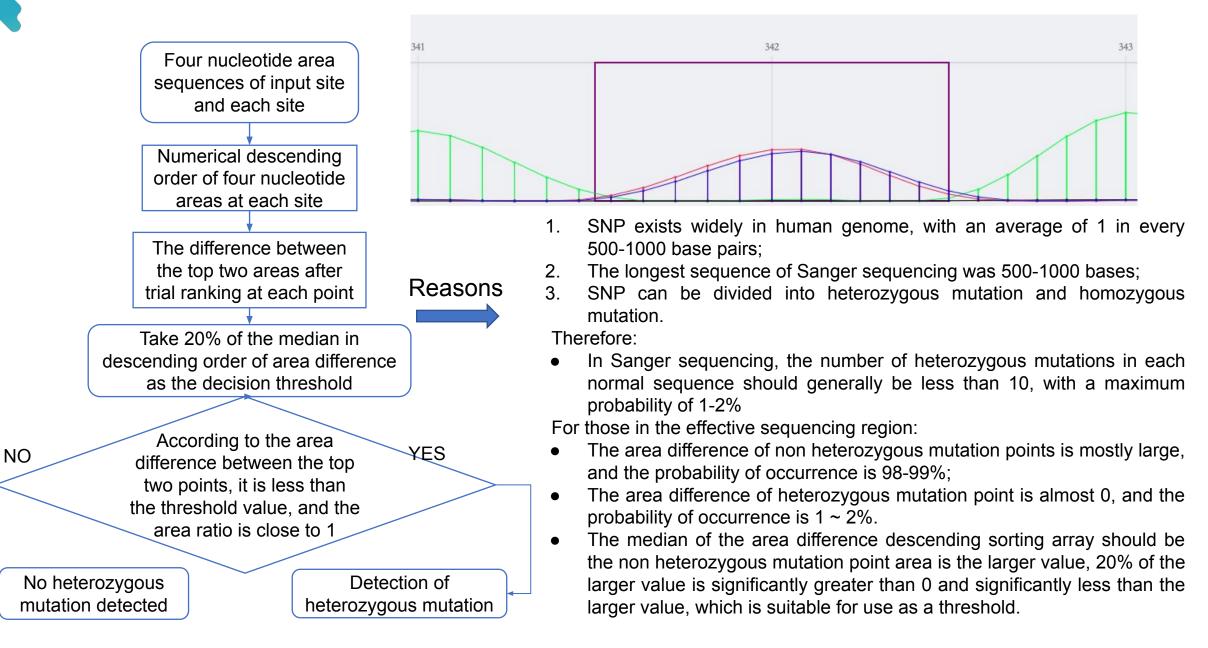
At each site, calculate the area of four kinds of nucleotide fluorescence envelope signal curve sample points respectively:

$$area = \sum_{i=1}^{n-1} t(p_i, p_{i+1})$$

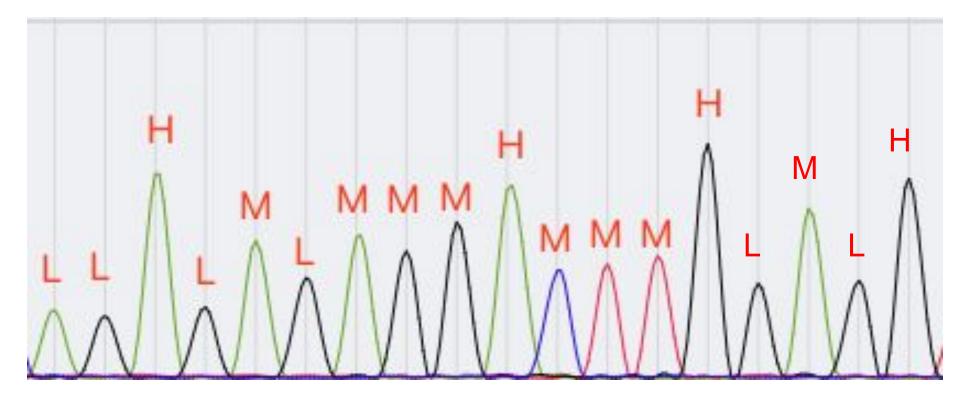
Where n is the number of sample points at this point, $p(X_{p,}y_{p})$ is the sample point, and t is the trapezoid area.

Calculation formula:

 $t = (y_{p+1} + y_p) * (x_{p+1} - x_p)/2$



11

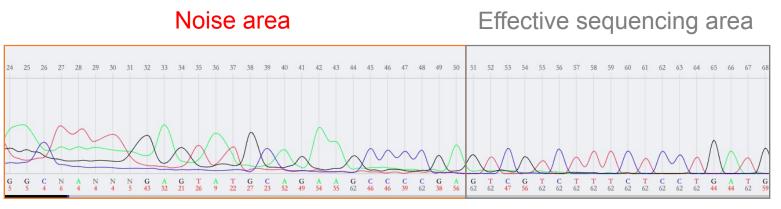

The corresponding envelope curve areas of four nucleotides at each point were obtained: areaA, areaT, areaG, areaC

Determine Whether it is a Heterozygous Mutation

12

Use K-Means Clustering Algorithm to Increase the Detection Accuracy of Judgment Threshold

Head and Tail Noise

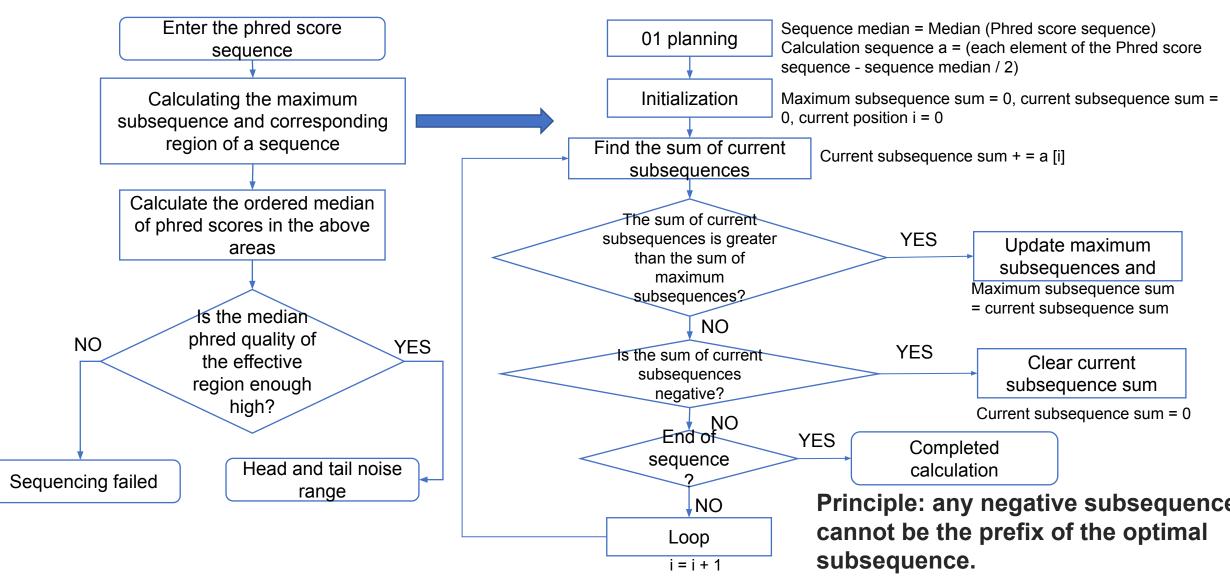

PCR amplification and equipment interference will introduce noise, which is characterized by disordered waveform overlap and high peak value.

It is generally distributed at the beginning and the end of the sequence. In this region, it is impossible to distinguish heterozygous mutation by area method.

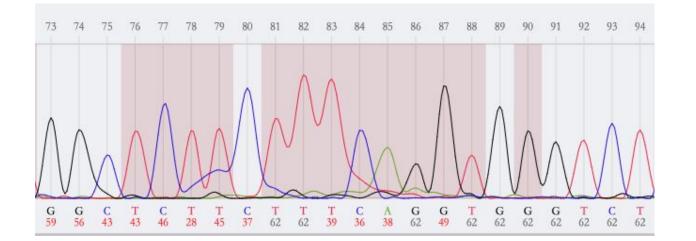
When Sanger sequencing test is designed, the nucleic acid sequence that affects the coding will be placed in the middle of the sequencing target as much as possible, and redundancy will be increased to avoid being affected by the first noise.

Phred score meaning

Phred quality score	Possibility of base detection error
10	1 for every 10
20	1 for every 100
30	1 for every 1000
40	1 for every 10000
50	1 for every 100000
60	1 for every 1000000

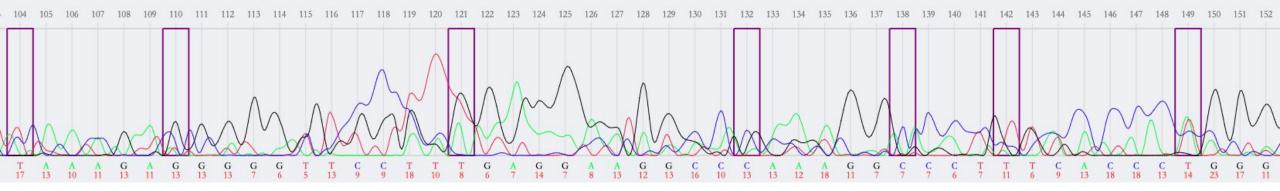


Lower Phred Score Average <30

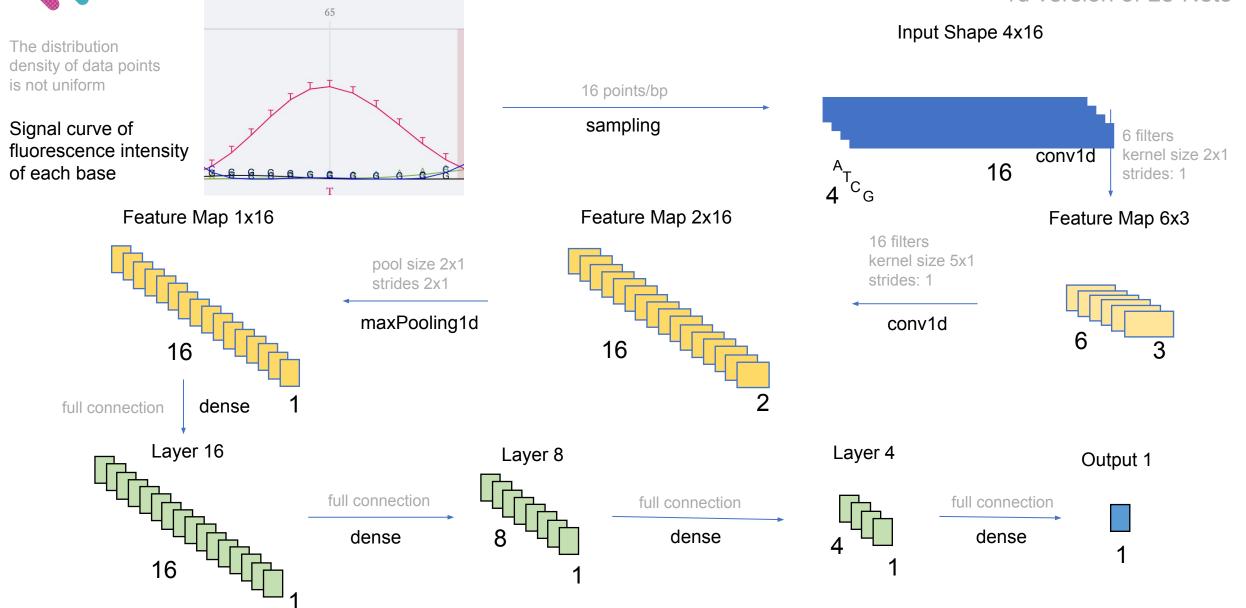

Remove Head and Tail Noise: Modified Mott Trimming Algorithms

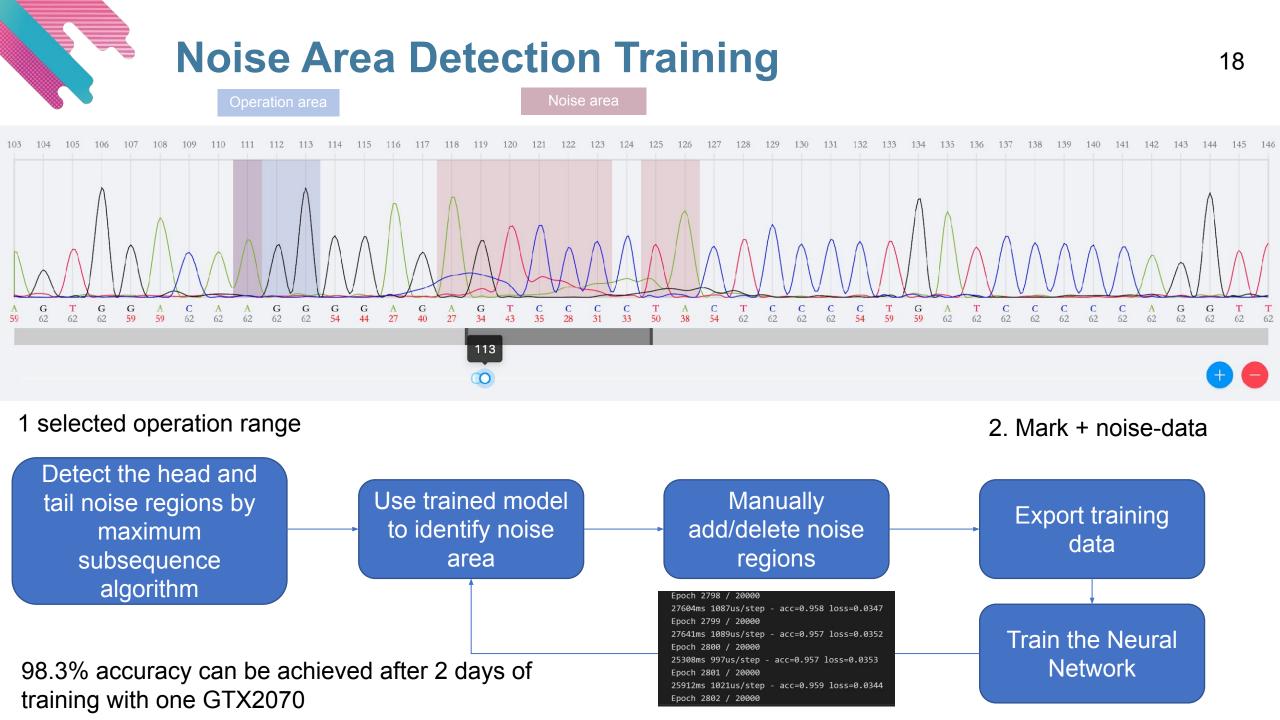
1. Overall process of noise removal

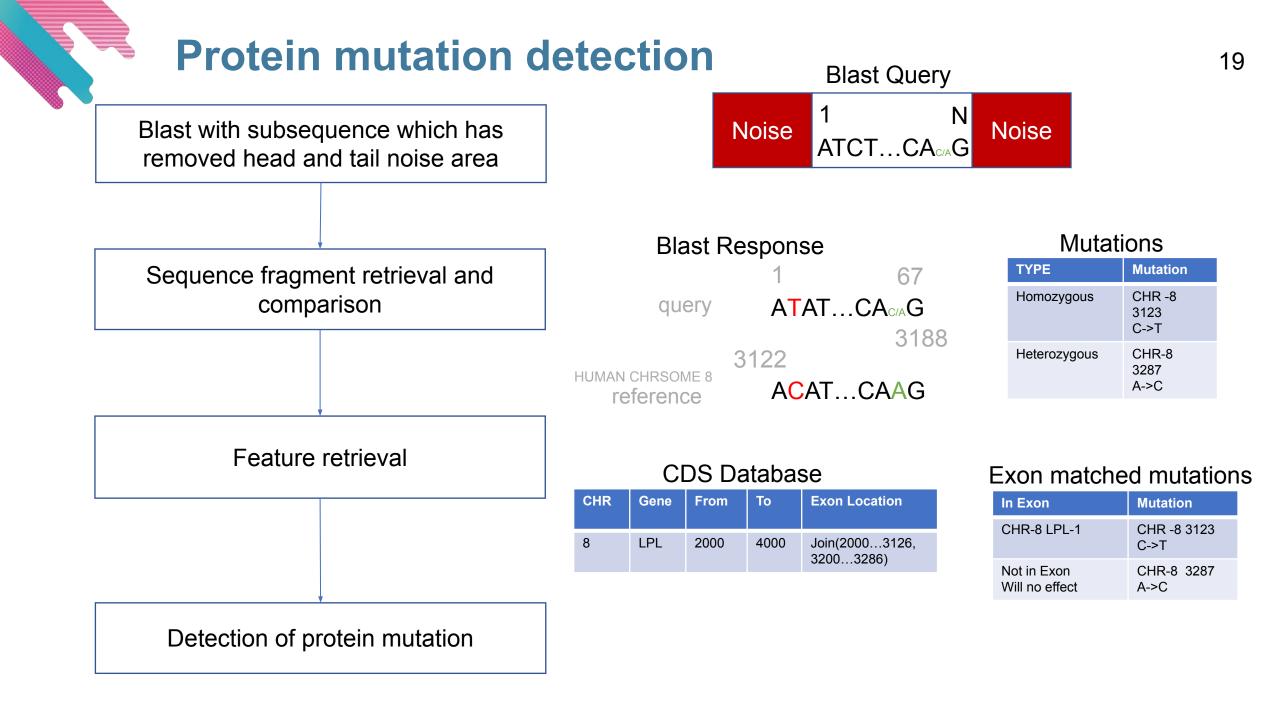
2. Maximum subsequence algorithm with O (n) time complexity



Middle Noise and Sequencing Failure


The noise points in the non head tail region are not removed as head tail noise. Thus, it will affect the subsequent detection steps of heterozygous mutation and homozygous mutation.

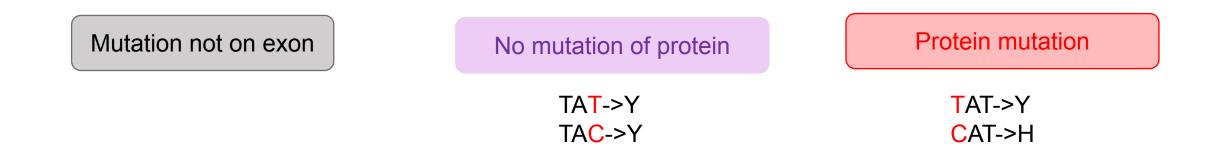

If there is noise in all areas, the sequencing fails. At this time, the whole data should be discarded. Otherwise, a large number of pseudopositive heterozygous mutations will be identified.



Noise Region Detection based on Convolutional Neural Network 1d version of Le-Net5

17

Standard Genetic Code


碱基1	碱基2						碱基3			
WV. 42 I		т с		С	Α		G		₩\$₩3	
	ТТТ	(Phe/F)	тст		TAT	(Tyr/Y)	TGT	(Cys/C)	т	
т	TTC	苯丙氨酸	тсс	(Ser/S)	TAC	酪氨酸	TGC	半胱氨酸	С	
	TTA		ТСА	丝氨酸	TAA ^[B]	终止(赭石)	TGA ^[B]	终止(蛋白石)	Α	
	TTG		TCG		TAG ^[B]	<mark>终止</mark> (琥珀)	TGG	(Trp/W) 色氨酸	G	
	СТТ	(Leu/L)	ССТ		CAT	(His/H)	CGT		т	
с	СТС	亮氨酸	ссс	(Pro/P)	CAC	组氨酸	CGC	(Arg/R)	С	
C	СТА		CCA	脯氨酸	CAA	(Gln/Q)	CGA	精氨酸	Α	
	CTG		CCG	CAG	谷氨酰胺	CGG		G		
	ATT	(Ile/I)	ACT		AAT	(Asn/N)	AGT	(Ser/S)	т	
	ATC	异亮氨酸	ACC	(Thr/T)	AAC	天冬酰胺	AGC	丝氨酸	с	
А	ATA		ACA	苏氨酸	AAA	(Lys/K)	AGA	(Arg/R)	А	
	ATG ^[A]	(Met/M) 甲硫氨酸	ACG		AAG	赖氨酸	AGG	精氨酸	G	
	GTT		GCT		GAT	(Asp/D)	GGT		т	
G	GTC	(Val/V)	GCC GCA		(Ala/A)	GAC	天冬氨酸	GGC	(Gly/G)	С
G	GTA	缬氨酸			GCA	GCA	丙氨酸	GAA	(Glu/E)	GGA
	GTG		GCG		GAG	谷氨酸	GGG		G	

TAT->Y TAC->Y

TAT->Y CAT->H

Display of Detected Mutations

Comparison

Comparison	South China Agricultural University's method	Our method
Noise removal method	Filtering based on wavelet transformation	Modified Mott trimming algorithm Convolutional Neural Network
Heterozygous mutation detection method	Back Propagation Neural Network Parameters: peak distance, height ratio and fluctuation ratio of two peaks	Computational geometry
Test data set	Eucalyptus urophylla 26 sequencing files	Homosapiens HTG-AP 3500 sequencing files
Accuracy rate Accurate number / (accurate number + missed number) * 100%	96.5%	94.59%
Missed judgement rate Number of missed judgments / (accurate number + number of missed judgments) * 100%	3.5%	5.01%
False positive rate Number of misjudgments / (accurate number + number of misjudgments) * 100%	24.6%	16%

 SNP基因分析系统 	× +			
← → C	/snp			■ ☆ @ 戸 圖 😔 :
基因SNP 分析系统	突变识别 MegaBLAST	ABIF详解 智能去嗓训练		数据库: 人类(9606) 🗸
			✓ 数据导入 ▲ 「「」」 ▲ 「」」 ▲ 「」」 ▲ 「」」 ● 「」 ● 「	 ◆ ◆ ◆ ◆ ◆ ● ◆ ○ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○

LPL6-1.ab1

LPL6-2.ab1

LPL6-3.ab1 LPL6-4.ab1

LPL6-5.ab1

LPL6-6.ab1 LPL6-7.ab1

LPL6-8.ab1

LPL6-9.ab1

LPL6-10.ab1 LPL6-11.ab1

LPL6-12.ab1

LPL6-13.ab1 LPL6-14.ab1

LPL6-15.ab1

LPL6-16.ab1

LPL6-17.ab1 LPL6-18.ab1

LPL6-19.ab1

LPL6-20.ab1

LPL6-21.ab1 LPL6-22.ab1

LPL6-23.ab1

LPL6-24.ab1 LPL6-25.ab1 LPL6-26.ab1 LPL6-26.ab1 LPL6-27.ab1

- 影片

iCloud

位置

🗐 最近项目

△ iCloud 云盘

囫 备份区 🔺

BOOTCAMP

_ 交换区 ≜

🙆 网络

● 蓝色

🥚 黄色

● 紫色

◎ 重要

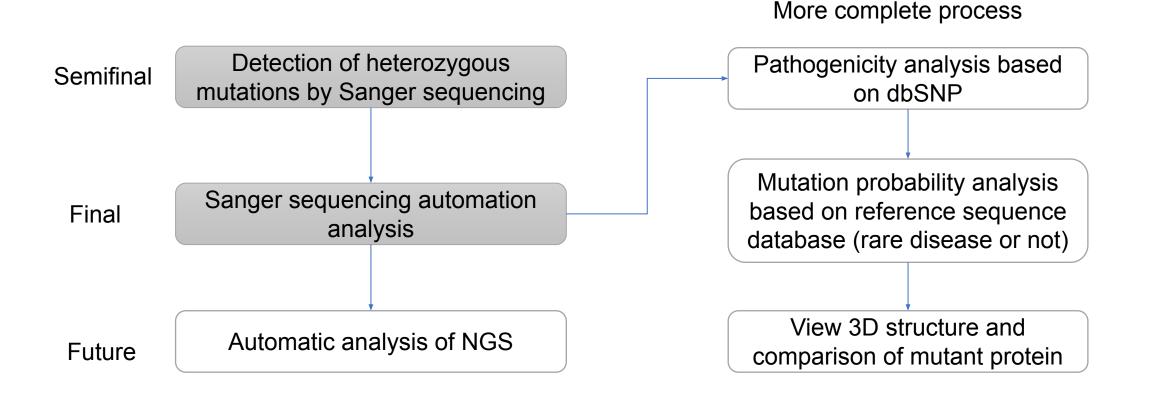
● 红色

● 灰色

◎ 所有标签...

标签

1. 900x faster than human;


2. No setup required;

入文件		折系统 测序失败	测序成功比率	疑似突变	疑似外显子区突变	疑似蛋白质突变	假阳性突变	突变识别正确率	
13		0	100.00%	2	2	2		100.00%	白清除 占号
				LI	PL3-85.ab1				●数据点关 ●切图
198 19	9 200 201 :	202 203 204 205 206 207 2	08 209 210 211 212 213	214 215 216 217 218 219 220	221 222 223 224 225 226 227	228 229 230 231 232 233	134 235 236 237 238 239 240 241	242 243 244 245 246 247 ;	348 249 250 251 252 253 ;
M	M			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			MMM	MM	
A T 61 61	G A 1 61 61	G A G T T G G 61 61 61 61 61 61 6	3 G T G C C 1 61 61 61 61 61 61	A A A A C T T 61 61 61 61 61 61 61 61	G T G G C C A 61 61 43 43 45 13 36	C C C T G T 39 43 61 61 61 61	A C A A G A G A 61 61 61 61 61 61 61 59	G A A C C A 61 61 61 61 61 61	G A C T C C 61 61 61 61 61 61
•	6	LPL3-84.ab1	٥	79					
۲	7	LPL3-85.ab1	۲	78 奈合 CDS信	'董292(G->A) LPL 蛋白质突变 9 8(A->T]			
	8	LPL3-86.ab1	٥	76			() 提示	,
	9	LPL3-87.ab1	٢	75			e	本次导入13个文件, 5949ms,已启动Me	杂合突变分析耗费
	10	LPL3-88.ab1	0	73			0		>
	11	LPL3-89.ab1	٢	81				MegaBlast查询耗费1 变分析	842ms, 已启动蛋白质突
	12	LPL3-90.ab1	٥	69			G	提示 蛋白质突变耗费2725	〉 ims. 发现有2外
	13	LPL3-91.ab1 FbF3-81 9P1	٢	36				蛋白质亮变耗弱2725 圈口的关充化的5152	

3.Complete Process of gene mutation analysis;

4.Good user interaction experience.

Expectation



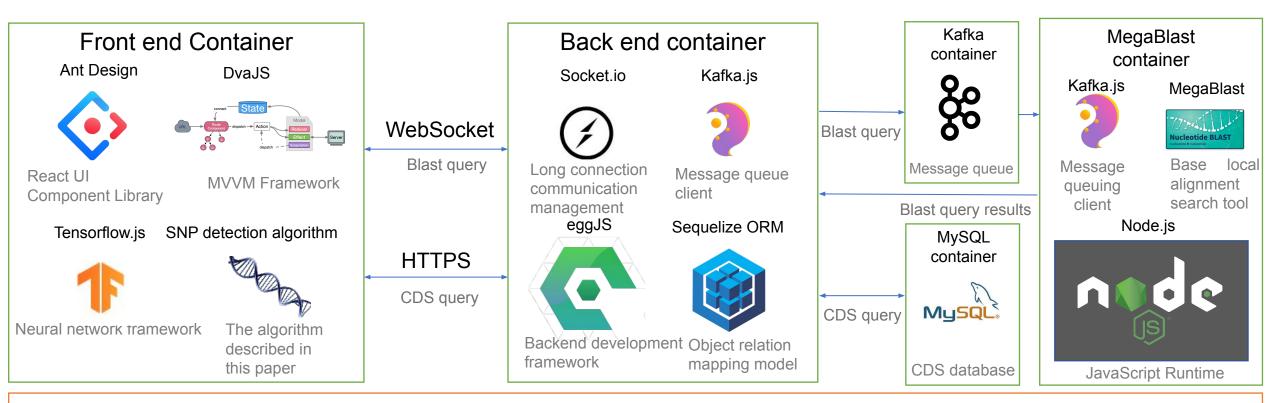
Thank you

Chuanyang Jin Yuting Wang Tenghao Li

Backup Slide: Next-Generation Sequencing (NGS)

Sequencing technology category	Maximum flux of single sequencing	Output format	Sequencing accuracy
New generation sequencing technology of NGS	All sequences on all chromosomes	Base sequence	False positive

Only 50% (diploid, if n-ploidy is 1 / N * 100%) of heterozygous mutations were detected successfully from nucleotide sequence


Backup Slide: MegaBLAST based alignment

基因SNP 分析系统	突变识别 MegaBLAST ABIF详解 智	智能去噪训练 数据库: 人类(9606) 🗸
test2	GTCTTACACACATTCACCAGAGGGTCCCCTGGTCGAAGCATTGGAATCC	the similar reference base sequences in the
test1		
Homo sapiens c	hromosome 8, GRCh38.p13 Primary Assembly	
1 19954182	GATGCAGATTTTGTAGACGTCTTACACACATTCACCAGAGGG	
test2		
Homo sapiens cl 1 19954182	hromosome 8, GRCh38.p13 Primary Assembly GATGCAGATTTTGTAGACGTCTTACACATATTCACCAGAGGG IIIIIIIIIIIIIIIIIIIIIIIIIIIII	with the reference sequence, the
	感谢	谢南京外国语学校 王禹听 李滕昊 金川杨 三位同学提供算法支持

Backup Slide: Platform application construction

Under the guidance of Zhang Weibo, chief engineer of Nanjing YOUPU IT Co., Ltd

Kubernete Container arrangement platform

Ubuntu Linux Server